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ABSTRACT

In recent years, interactive textbooks have gained prominence in an
e�ort to overcome student reluctance to routinely read textbooks,
complete assigned homeworks, and to better engage students to
keep up with lecture content. Interactive textbooks are more struc-
tured, contain smaller amounts of textual material, and integrate
media and assessment content. While these are an arguable im-
provement over traditional methods of teaching, issues of academic
integrity and engagement remain. In this work we demonstrate
preliminary work on building interactive teaching modules for data
structures and algorithms courses with the following characteris-
tics, (1) the modules are highly visual and interactive, (2) training
and assessment are tightly integrated within the same module, with
su�cient variability in the exercises to make it next to impossible
to violate academic integrity, (3) a data logging and analytic system
that provides instantaneous student feedback and assessment, and
(4) an interactive visual analytic system for the instructor to see
students’ performance at the individual, sub-group or class level,
allowing timely intervention and support for selected students.
Our modules are designed to work within the infrastructure of the
OpenDSA system, which will promote rapid dissemination to an
existing user base of CS educators. We demonstrate a prototype
system using an example dataset.
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1 INTRODUCTION

Instructors in lecture based courses in introductory computer sci-
ence have an expectation that the material presented in class is
reinforced via textbook reading, lab exercises, assigned homeworks
or quizzes. Given the rapid increases in the CS population over
the past few years [39], these courses are large, and monitoring
the performance of all students and reaching out to at-risk stu-
dents is a challenge. This has resulted in new ways of teaching
such courses, broadly classi�ed as active learning techniques, that
can include any combination of lab-based instruction, �ipped class-
room settings, gami�cation, peer-learning, or use of multimedia
content [20, 23, 28, 33], all of which attempt to better engage stu-
dents.

Our focus in this work is towards building new interactive learn-
ing modules and analyzing student performance in data structures
and algorithms courses, which have exhibited signi�cant drop rates
of 40-60% [3, 39]. These modules can be part of interactive text-
books [35, 38, 40] and help reinforce lecture content outside of class.
We also present visual analytic tools that will make it easier for the
instructor to monitor and understand student performance during
the course, thus allowing timely interventions of students who
might be falling behind, or at-risk students. Our learning modules
and visualization tools are extensions to OpenDSA [35] and the
Canvas Learning Management System (LMS) [12] and have the
following characteristics:

Interactive Modules. In contrast to the typical use of quizzes
(short answers, multiple choice questions) in interactive textbooks,
we propose highly interactive modules, in which students directly
interact with the visually represented data structure or algorithms to
complete the module. Students can practice an exercise any number
of times in the learning or training phase (to ensure master of the
material); this is followed by an uninterrupted assessment phase.
Autograding provides immediate feedback on student performance
to both the student and the instructor.

Academic Integrity. The constructed modules are built with
enough variability so that no two students will see the exact same
data structure or algorithm module simultaneously; this reduces
academic integrity violations, and eliminates them in controlled
situations, such as proctored exams, since neighboring students will
receive di�erent but equivalent modules as part of their assessment.
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system, using JSAV library for generating the module visualizations
that have been customized to provide a highly interactive, visual
and engaging experience for students. Learning and assessment
are part of the same interaction, rather than a post-test, which is
current practice in interactive textbooks. We have used the JSAV
library to generate the modules with su�cient variability in the
module instances, to ensure academic integrity. We also illustrate
examples that demonstrate the ability to incorporate basic data
structure algorithms into these modules and the means to grade
automatically, thus incorporating complex and foundational con-
cepts in an interactive and more engaging environment. We also
illustrated visual analyses of student performance data using bi-
clustering algorithms, so as to make sense of the grades generated
by the learning modules

The current implementation demonstrates a prototype of the
parts of the system described in Fig. 1. Much work remains to be
done in connecting the various components and integrating the
data into the visualization modules, prior to routine use as part
of the LMS. This will be followed by formal user studies in data
structures and algorithms courses. Finally, more work is needed
in developing the visual analytics system to better understand the
needs of the instructors as well as identi�cation of at-risk students
for timely intervention and support.
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